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Rice is a staple food source for much of the world and most of it is grown

in paddies which remain flooded for a large part of the growing season. This

anaerobic environment is ideal for the activities of methanogenic bacteria, that

are responsible for the production of methane gas, some of which is released into

the atmosphere. In order to better understand the role that rice cropping plays

in the levels of atmospheric methane, several models have been developed to

predict the methane flux from the paddies. These models generally utilize some

type of nominal plant growth curve based on one or two pieces of ground truth

data. Ideally, satellite data could be used instead to provide these models with

an estimate of biomass change over the growing season, eliminating the need for

related ground truth. A technique proposed to accomplish this is presented here,

and results that demonstrate its success when applied to rice cropping areas of

Texas are discussed. Also presented is a method for utilizing satellite data to map

rice cropping areas that could eventually aid in a scheme for populating a GIS-type

database with information on exact rice cropping areas. Such a database could

then be directly tied to the methane emission models to obtain flux estimates for

extensive regional areas.
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Chapter 1

Introduction and Background

The study of rice agriculture is necessary for both the importance of rice as

a vital food source and because of the fact that cultivating it has an unfortunate

byproduct, namely methane gas. As a food source, rice is a staple for a large

majority of the world's population, especially in Asia. Because the populations of

many Asian nations are increasing at rapid rates, the production of rice will need

to similarly increase. In 1989, it was estimated that the demand for rice would

increase by 65% by the year 2019 [26]. Rice crops are considered to be one of

the primary anthropogenic sources of methane gas [3],[5], [18], [25], and [43]. A

reason for concern is that this gas is a so-called "greenhouse" trace gas and given

its increasing levels in the atmosphere, is thought to contribute to the suspected

global warming phenomenon. Some estimate that methane may contribute up to

20% to the global warming effect [34].

Trace gas emissions from anthropogenic sources is an issue that generates

great worldwide interest because of the fact that mankind is very likely affecting

the current and future (:limate in potentially negative ways. In an effort to better

understand these effects, scientists and engineers are conducting research on all of

the varied fronts which relate to climate change and biosphere/atmosphere inter-

actions. The study of global warming through increasing concentrations of green-

house gases is one area which has received much media and scientific attention.



Researchfueledby debateson this topic is beingconductedon numerous,inter-

related fronts in an effort to better understandthe complex relationship between

human activities and the earth's climate. The researchrangesfrom attempting

to verify if the observeddata evensupportsthe existenceof an anthropogenically

generatedglobal-warmingphenomenon,to identification of sourcesand sinks of

the trace gases,to measuringthe sourcestrengths, to studieswhich focuson mod-

eling the processeswhich generatethe gases,and finally, to trying to project their

impact on the global climatic system [10].

Someof the morecommonlyknown sourcesof greenhousegasesare related

to industry and transportation. Carbon dioxide, CQ, from automobile emis-

sionsis onesuchexample. Lesserknown aresourcesfrom natural and cultivated

vegetation, such as the methane, CH4, resulting from rice cropping. While the

concentration of atmosphericmethane is significantly less than that of carbon

dioxide, CH4 has been estimated to have up to 32 times the insulating capability

of carbon dioxide, making it an important gas to monitor [26].

The remainder of this chapter will provide some additional background in-

formation on the effects o[atm0spheric methane, and the rolethat rice agriculture

plays as a source in the methane budget. This will be followed by a brief descrip-

tion of efforts to model this source of atmospheric methane. Finally, this chapter

will end with a statement of the hypotheses of this thesis, at which time a descrip-

tion of the information contained in the rest of this document will be provided.

1.1 Atmospheric Methane

Of the constituent gases in the atmosphere, methane is considered a trace

gas because its abundance is very small compared to the major components, as

can be noted in Table 1.1.



Table 1.1: Chemical Composition of the Atmosphere- SelectedConstituents,
adapted from [5]

Constituent ChemicalFormula Volume Mixing Ratio
Nitrogen N_ 781084%
Oxygen 02 20.948 %

Argon Ar 0.934 %

Carbon Dioxide CO2 360 ppmv

Neon Ne 18.18 ppmv

Helium He 5.24 ppmv

Methane CH4

H2Hydrogen

1.7 ppmv

0.55 ppmv

Nitrous Oxide N20 0.31 ppmv

Carbon Monoxide CO

oaOzone (tropospheric)

Ozone (stratospheric) Oa

50-200 ppbv

10-500 ppbv

0.5-10 ppm

'dry air)

Of course, a relatively small amount of a trace gas in the atmosphere does

not imply that it can not exert a significant impact on atmospheric chemistry or on

the behavior of the atmosphere in general. One commonly talked about trace gas

is ozone. Most people are familiar with the hole in the stratospheric ozone Iayer

over Antarctica and the banning of certain chemicals, such as chlorofluorocarbons

(CFCs), thought to have caused it. Many people in larger cities are also aware of

ozone in the troposphere because there are days when they are warned to minimize

outdoor activity because of its harmflll effects.

Like ozone, methane is found in both the troposphere and stratosphere,

and affects the atmosphere in each through different processes. The effects of an

atmospheric constituent can be either direct or indirect. In the case of methane,

it is both. The direct effect of atmospheric methane is radiative forcing, which

derives from the fact that the spectrum of methane has absorption bands which,

in essence, cause radiative energy to become trapped in the atmosphere rather



than being releasedinto space. The indirect effectsof methanederive from the

oxidation of methanein the atmosphereby hydroxyl, OH, which is the primary

sink for methane. In the troposphere,the oxidation of CH_ leadsto the formation

of CH20 (formaldehyde), CO, and in the presenceof sufficient NOx, ozone. In

the stratosphere, oxidation of methane results in H20 [50]. Thus, the greater

the levelsof methanein the atmosphere,the greater the decreasein the oxidizing

capacityof the atmosphere,and the greaterthe increasein other undesirabletrace

gases.

1.2 Rice Paddies as a Source of Methane

The largestvegetativesourceof methaneis attributable to the cultivation of

rice. Thus, rice paddiesand their role as a sourceof CH4 are important subjects

to study. Before discussing the role of rice specifically as a source of atmospheric

methane, a brief description of the chemical processes attributable to methane

flux from wetland areas in general should come first. These processes can be

generalized into: production, consumption, and transport.

The production of methane occurs through a series of microbiological pro-

cesses which are controlled primarily by the absence of oxygen, such as in flooded

waters, and the availability of readily degradable carbon. These two conditions

are required for the functioning of the bacteria which produce methane. These

methanogenic bacteria, or methanogens, can work only after organic matter has

been broken down into usable substrates, such as hydrogen and acetate, by other

types of bacteria [35]. The source of the organic matter from which substrates

are produced can come from any of the following: mineralizable carbon that is

naturally occurring in the soil, the decay of carbon amendments added to the soil,

and from the roots of the plants themselves, either by exudation or by decay.



Once methane is produced in the anaerobicsoil, someof it is consumed

through oxidation. This processis due to activities of methanotrophic bacteria,

which require oxygenand, of course,methane. There are two placeswhere there

is an oxic/anoxic interface in a floodedenvironment: at the soil/water interface,

and in the rhizosphere,which is the portion of the soil directly under the influence

of the root systemof a plant [41].

Since water has a low methanesolubility, someof the methane produced

which is not oxidized by the methanotrophsmay eventually be transported from

the anaerobicsoil layer and releasedinto the atmosphere.There are three trans-

port possibilities: plant-mediated,ebullition of gasbubbles,and diffusion through

the soil/water and the water/air interfaces [34]. The debate on the amount of

methane that is transported through each of these pathways is far from settled.

Additionally, the timing of the methane release(s) is under debate.

Most scientists consider that the majority of the methane flux from rice is

derived from plant-mediated transport. In fact, several sources estimate that up

to 90% of the methane flux from rice paddies has been transported through the

aerenchymal system [14:]. The aerenchymal system is an intercellular gas-space

system developed in plants that grow in soils that are water-saturated or otherwise

deficient in rhizospheric oxygen. In waterlogged soils, there is measurable move-

ment of oxygen from the roots to the rhizosphere, and this same system allows a

means for the methane to be transported to the atmosphere [31].

Of course, the goal of this type of research is not to lead to any suggestion

that rice cultivation be curtailed. Instead, the goal is to improve estimates of the

atmospheric methane budget which would then lead to a better understanding of

the global climate. It is through improved understanding of the climate system as

a whole, that scientists and governing bodies can more effectively target decreases
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for anthropogenicsourcesof eachof the greenhousegases.

This is not to say that researchis not being conductedinto ways that rice

cropping practicescould be changedin order to mitigate the contribution of rice

to atmospheric methane levels. Oil the contrary, many studies have been already

been conducted and research is still continuing. It should be recognized that this is

not a simple task. Because much of the rice production takes place in low-income

countries, in order for CH4 flux mitigation strategies to succeed there can be no loss

to the farmer in terms of yield, and no added cost to the farmer in terms of more

expensive cropping practices [23]. But there has been some success, especially

with research conducted to determine the impact of changing rice cultivar and/or

cropping practices on CH4 fluxes. Some of those strategies include simpler ones

such as more effective water management and careful selection of soil amendments,

and more complex ones such as the breeding of new cultivars which do not exhibit

as much potential for methanogenesis [48].

1.3 Modeling Methane Emission from Rice Paddies

Because of uncertainties such as those mentioned above on the timing and

mechanisms of methane transport, the actual magnitude of rice as a source of

atmospheric methane is not precisely known. In an effort to remedy this situ-

ation, researchers have begun to model each of the three processes mentioned

above (production, consumption, and transport), sometimes as a whole system,

sometimes one process at a time. At the start of this research project, four whole-

system models were identified as candidates for evaluation. These models were

developed by Dr. Mingkui Cao [6], Dr. Yao Huang [17], [15], Dr. Changcheng Li

[unpublished], and Dr. Peter van Bodegom [45], [44]. After careful consideration,

two-Of the models were eliminated from consideration for study: the Cao model,



becauseDr. Cao is no longer working in the same research area, and the Li model

because it is currently undergoing its validation process.

The remaining two models were selected for inchlsion in this study. Tile

van Bodegom model, more mechanistic in nature, was developed at Wageningen

Agricultural University in the Netherlands. The Huang model, based more on

empirical data, was developed at Rice University in Houston, Texas. Although

these models will be described in more detail in later sections, it is important to

note here that although both of these models consider each of the three processes

leading to methane emissions differently, they do have one important thing in

common: the need to describe the growth of the rice plant in order to determine

the rates of methane production, oxidation, and transport. The plant characteris-

tic that is used to define plant growth in both of these models is total aboveground

biomass.

1.4 Research Goals and Objectives

As will be described in Chapter 2, data derived from remote sensing satellites

has been shown to provide valuable information about vegetation. Because of this,

it was recognized that the biomass information required to model methane flux

from rice paddies might be derived through the use of satellite remote sensing. In

order to test this idea, image data from one satellite sensor, the Advanced "Very

High Resolution Radiometer (AVHRR), was utilized. The motivation for selecting

this particular sensor will be described in Chapter 2.

The geographic focus of the work was the Gulf coast region of Texas, one

of the most productive areas of rice cultivation in the world [42]. For this study,

AVHRR imagery was acquired for the 1992-1995 and 1998-1999 growing seasons.

Plant data from two different test sites in Texas was obtained for these six sea-
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sonsand the successof the methodologyused to relate the AVHRR data and

the biomassof rice plants is presentedin Chapter 3. The use of biomass values

estimated from AVHRR as inputs to the two models will be described in Chap-

ters 4 and 5, and a comparison of the resulting methane emission estimates to

methane flux measurements collected in Texas in 1994 will be presented. Chapter

6 will describe a method of detecting rice cropping areas of Texas using AVHRR

imagery, and Chapter 7 will provide a summary and present conclusions of the

thesis research.



Chapter 2

Remote Sensing and the AVHRR Sensor

2.1 Introduction

Satellites have been utilized for over forty years to study the earth, its

natural phenomena,and mankind's activities upon it. The most obviousbenefit

of utilizing satellite imagery is that more land area can be studied at one time

than can be studied by physically visiting the area of interest. Additionally, the

opportunity for repeat coverageof the areasof interest, over long periodsof time,

is afforded through the useof satellite imagery.

The selectionof the satellite sensorfrom which onewants to useimagedata

dependsupon the application of interest. Satellite sensorscan be categorized

into passiveand active sensors.Active imaging sensorsutilize their own energy

sourceto illuminate featuresof interest, whereaspassivesystemssensenaturally

occurring emitted or reflectedenergy [21]. Passivesensors,which makeup the

majority of systemsused today, generally sensewavelengths in the visible and

infrared (IR) portions of the electromagneticspectrum, although there are some

passivemicrowavesensorsas well. In general, visible and near infrared (NIR)

sensorsdetect reflectedsolarradiation, while longerwavelengthIR sensorsdetect

emitted thermal radiation. The study of vegetation using remote sensing,which

will be discussedin the following section, is most often conducted with sensors
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operating in the visible and NIR portions of the spectrum.

2.2 Remote Sensing of Vegetation

The study of natural andcroppedvegetationis oneof the major applications

for remote sensing,becausesatellite data can provide information about how

vegetation is changing,if at all, over time and space. The potential for gaining

this type of insight is due to knowledgeof how reflectedsolar radiation is altered

by the vegetation. As mentionedabove,sensorswhich acquiredata in the visible

and NiR portions of the spectrumare often utilized, for reasonswhich will now

be described.

Visible channelsowe their utility in studying vegetation to the fact that

pigments, found primarily in the leaves,absorbenergyin this wavelengthregion.

Thesepigments are responsiblefor absorbingenergy in order to initiate photo-

synthesis,and areprimarily chlorophyll, but alsocarotene,and xanthophyll. The

absorption of visible energyby vegetation is a function of wavelength. In fact,

becausechlorophyll-a absorbsmore in the blue ( 0.4pm-O.5pm) and in the red

( 0.6pro-0.?pm ) portions of the spectrum,most vegetationappearsgreen [4].

Sensorchannelsin the NIR region, from 0.75 pm to 1.35 prn, aid in the

study of vegetation because the internal structure of leaves causes high levels of

reflectance to occur. Basically, because there are no pigments which absorb solar

radiation in this wavelength region, the energy enters the internal structure of

the leaves where some of it is reflected, and the rest is transmitted through the

leaf [24]. Through spectroscopic analysis on individuals leaves, it is known that

approximately 50% of the incident radiation is reflected. The reason for this is

due to the changes in indices of refraction between the cell walls in the leaves

and the air spaces between these cells [4]. These visible and NIR features of the
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interaction betweensolar radiation and vegetationcan be seenin the reflectance

spectrum of vegetationshownin Figure 2.1. It should also be noted, that as the

leavesmature, moreair spacesare formedbetweenthe cells in the leaves, causing

greater reflection in the; NiR waveIengths. Additionally, as canopies of leaves

become more dense, the added layers of leaves provide additional opportunities

for NIR energy to be reflected. Thus, the denser the leaf canopy, the greater the

NIR energy reflection.

60%

40%

20%-

: 0%
- 0

Vegetation Bare Soil

L 016 O_S 110 112 114 1'.6 118 2_0 2_2 2'.4

Wavelength (_tm)

Figure 2.1: Examples of Reflectance Spectra for Vegetation, Soil, and Water,

adapted from [21]

2.3 Vegetation Indices

Considerable research has been conducted on the development and testing of

vegetative indices which, generally speaking, are transformations or combinations

of original spectral reflectances collected by remote sensors. Many indices have

been developed which are sensor-specific, requiring specific bands in the visible

and infrared portions of the spectrum. A widely used index that is applicable
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to any sensorwith a channelin the visible portion of the spectrum and one in

the near infrared portion, is called the NormalizedDifference Vegetation Index

(NDVI). Through simultaneouscollection of overheadimagery and ground mea-

surements,NDVI valueshavebeenfound to becorrelatedwith vegetativecanopy

characteristicssuchas leaf area index [28]. Numerous other studies of the use of

NDVI, and other vegetation indices, derived from a variety of sensors, have been

conducted. Among them are [32], [33], [36], [11], and [22]. Investigations of the

use of vegetation indices to study specifically rice were conducted by [2], [20], [8],

[371, [38], and [40].

The NDVI is calculated using the reflectance in the visible (noted as VIS)

and NIR channels for each pixel in the image using the following formula:

NDVI = ReflectanceyrR -- Reflectanceyrs
Re flectancegiR + Re flectanceyls

The resulting NDVI values range between -1 and 1. Because, as described in the

previous section, vegetation has higher reflectances in the NIR wavelengths than

in the visible wavelengths, NDVI values for vegetation are always greater than 0,

and as the plants mature and canopies become more dense, the NDVI values can

be generally expected to increase through the growing season. As vegetation starts

to die off, or become stressed due to disease, the chlorophyll levels in the leaves

begin to decrease and subsequently, the absorption of visible wavelength energy

will decrease as well. Since in this case, the reflectances collected by the visible

channels in a sensor start to increase, the NDVI values will begin to decrease.

An additional use of NDVI derives from the fact that water, soil, and man-made

objects do not have the spectral response functions at all similar to vegetation.

Thus the NDVI values for these objects are lower than for vegetation. Thus, NDVI

is very often used to differentiate vegetated areas from non-vegetated areas.

Other vegetation indicies have been developed and used over the years,
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especially thosewhich are capableof correcting for contributions of reflected en-

ergy from the backgroundsof vegetation. An exampleof one of these is the Soil

Adjusted Vegetation Index (SAVI). As the name implies, SAVI adjusts the re-

flectancescollected by a sensorsuch that effect of soil reflectanceis removed,

leaving the index to recordthe responsedue to vegetationonly. The useof SAVI

requiresthat the soil backgroundof the vegetationof interest be isolated by col-

lecting a raw soil reflectance. In the caseof rice paddies, the background for a

majority of the growing seasonis water, and not soil. Becausethe paddies are

floodedonly after the riceplants havebegunto grow, it is not possibleto obtain a

reflectancevaluefor the water only. It wasthus decidedthat the only vegetation

index that would be investigatedin this thesiswasNDVI.

2.4 Application of AVHRR to the Study of Rice

The subsectionbelow will describe the attributes of the AVHRR sensor

which can be utilized to provide useful information on vegetation. Following

that will be a description of the manner in which the imagery wasprocessedand

preparedfor application in this study.

2.4.1 The AVHRR Sensor

The AVHRR sensoris carried on-board the National Oceanic and Atmo-

sphericAdministration's (NOAA's) Polar Orbiting Environmental Satellites,which

are sunsynchronousplatforms. The sensoracquiresdata in five channels,which

are defined in Table 2.1 for the most recent platforms. The spatial resolution of

the sensoris 1.1 km at nadir and approximately 6 km at the edgeof the scans

(55.4degreesoff-nadir). The relatively coarsespatial resolution allows for images

of extensiveland areasto becollected,from which studiesof large-scalevegetation
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Table 2.1: AVHRR Channel Specifications,adapted from [13]

[[_Channel Number Description
1
2

visible
reflectedinfrared

Band Width

0.58 to 0.68 #m

0.725 to 1.05 #m

3 hybrid infrared 3.55 to 3.92 #m

4 thermal infrared 10.3 to 11.3 #m

5 thermal infrared 11.5 to 12.5 #m

development cycles, vegetation transformations such as tropical deforestation, and

land-cover type classifications can be conducted [27]. One feature of the AVHRR

sensor which offsets the low spatial resolution in comparison to other sensors, such

as the Landsat Thematic Mapper (TM), is the fine temporal resolution it achieves.

As opposed to Landsat TM, which has repeat coverage every 16 days, a given por-

tion of the earth can be imaged between 1-3 times per day with AVHRR, allowing

for the ability to monitor vegetation dynamics over shorter time periods. In this

study, only the image from the pass which occurred over the area of interest in

the afternoon each day was utilized. This pass was selected since it is the closest

to solar maximum.

In deciding to utilize remotely sensed data, researchers must often make a

decision between the amount of ground area covered in a given image scene and

the spatial resolution of the pixels in the scene. Generally speaking, the higher

the spatial resolution of an image, the less ground area that image will contain.

For studies being conducted on earth systems of regional and/or global scales,

scientists quite often have to give up high spatial resolution in order get imagery

which covers more of the earth's surface. Because of this, imagery from AVHRR

is routinely utilized to conduct studies on regional and global scales.
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2.4.2 Processing of AVHRR Imagery

The sourceof the AVHRR data used in this study varied basedon year,

but all of it was receivedoriginally in raw form. Image data from 1992-5was

offloadedfrom archivetapesheld at the Colorado Center for Astrodynamics Re-

search (CCAR). The data on these tapes were backups of transmissions received

by a high resolution picture transmission (HRPT) antenna operated by CCAR,

which receives direct data transmission from the NOAA polar orbiters. Imagery

from 1998 was obtained directly from the HRPT antenna, and the 1999 imagery

was received from the University of Texas which operates its own HRPT antenna.

Additionally, image sets were augmented when needed by imagery downloaded

from the Satellite Actiw_ Archive (SAA) website operated by NOAA.

The raw data was then processed in the following manner. First it was

navigated using code written at CCAR which uses ephemeris data from the satel-

lite. The next step was to calibrate the navigated data, tile values for which were

obtained directly from NOAA. Because calibration allows reflectances and tem-

peratures represented by imagery from different sensors to be directly compared,

great care was taken to ensure that the most up-to-date calibration coefficients

were used. In a case where it was found that the coefficients had been updated,

the imagery was reprocessed. After calibration, and before any further processing

was done, images which were found to have pixels representing the study areas

which exceeded solar and sensor viewing angles of 30 degrees were eliminated.

The next step in the image processing chain was to correct for the effects that

the atmosphere has on the reflectances collected by the sensor. These corrections

are necessary due to the fact that atmospheric particles and gases can scatter,

reflect and absorb electromagnetic radiation such that the reflectances collected

by a satellite sensor do not accurately represent the energy originating from the



16

ground area representedby a pixel. In the wavelengthregionsbeing studied in

this thesis, namely Channels1 and 2 of AVHRR, one must be concernedmost

with scattering of energy in the visible wavelengths,and absorption of energy

in tile NIR wavelengths.Scattering will generallycauserefleetancescollected by

Channel 1 to be higher than they should be, and the reflectancescollected by

Channel 2 to be lower, resulting in lower NDVI valuesthan would be with no

atmosphericeffects.

The algorithm selectedin this study to correct for atmosphericeffects is a

semi-empirical algorithm called: Simplified Method for Atmospheric Correction

(SMAC) [29]. One non-imagederived input which is required for running SMAC

is aerosoloptical depth. Becausethis valueis difficult to obtain, an approximation

wasusedin this application whichutilizes visibility data [39].Thesewereobtained

from the National Climatic Data Center (NCDC) of NOAA. Other non-image

derived inputs required by SMAC are water vapor content and the properties of

the aerosolsfound in the air. The inputs usedin this study representexpected

valuesfor atmosphericconditions in the mid-latitudes during summertime, and

were obtained from a radiative transfer atmosphericcorrection algorithm called

SecondSimulation of Satellite Signal in the Solar Spectrum (6S).

Onceatmosphericcorrection wascomplete,the imageswererun through a

cloud detection algorithm which utilizes a split channel technique. Ill this study,

pixels whosechannel 1 8-bit reflectance values were greater than 11% and whose

l 1-bit channel 4 values were less than 300 degrees Kelvin were considered clouds

and masked to a value of zero.

Once each of the individual five-band images were navigated, calibrated

and atmospherically corrected, the NDVIs were computed. The NDVI images

were then overlaid with a map and nudged, if required, in order to correct for any
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satellite time errors that would causeeachimageto not register to the map, and

eachother. Then, the final step in the imageprocessingchain was the formation

of an NDVI time seriesfor eachgrowing season.The method and rationale for

assemblingthesetime seriesarediscussednext.

2.4.3 NDVI Time Series

As pointed out in Section2_4,1,one of the attributes of the AVHRR sensor

platform is a high repeat sampling.This characteristiccanbe taken advantageof,

especiallywhen studying vegetation. If one builds up a time seriesof NDVI im-

ages,then onecan monitor the changesin the vegetationof interest over time. In

this research,a time series"cube" of 10-daycompositeNDVI mapswasassembled

for eachgrowing seasonunder study.

Becauseof the elimination of someimagesdueto solarand sensoracquisition

angles,and somepixelsdue to the presenceof clouds,the sampling rate of images

overa growingseasonis not regular. As a meansof eliminating this inconsistency,

as well asmitigating the effectof cloud-affectedpixels which arenot detectedby

cloud algorithms, a commonmethod of assemblingNDVI time seriesis to create

a seriesof maximum value composites(MVCs). An MVC can be assembledfor

every week,every ten days,everymonth, etc. Selectionof the periodicity of the

compositesdependson severalfactors, suchas the duration of the overall time

series. A pseudo-decadaltime period wasutilized in this study such that each

month had three composites.The first two compositeshad ten dayseach,while

the third compositehad ten or elevendaysdependingon the total numberof days

that month has.

The rationale for usingthe maximum-valuefor a given pixel over the com-

posite period, rather than, say,an averagevalue, is to maximize the chancesof
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eliminating the effectsof clouds,sincethe NDVI of a cloud is lower than for veg-

etation. Another advantagein using the MVC techniqueis that the effectsof the

anisotropic nature of reflectancescollectedby satellites are minimized. Because

a reflectancemeasurementis particular to its set of acquisition and illumination

geometries, it would be ideal to take into account the bidirectional reflectance

function (BRDF) for eachmaterial type in the image. In this manner, corrections

could be madeto allow a moresoundcomparisonamongimagescollectedof the

samearea at different times [46]. Unfortunately, to implement a BRDF correc-

tion on large imagescoveringmany yearsworth of data is, for many reasons,an

intractable goal. The impact of the inability to accomplishthis task can be miti-

gated by using MVCs becausethe geometrieswhich result in higher NDVI values

are favored,creating a higher level of consistencyfrom image to image. Thus, a

time seriesresulting from the useof MVC NDVI valuesmay beslightly higher, on

average,than the time serieswould havewithout MVCs, but this minimizes the

chancesthat variations in NDVI valuewithin a time seriesare due to only BRDF

variations.

A schematicdrawing representingthe concept of the AVHRR NDVI time

seriesthat werebuilt for eachof the yearsunderstudy in this researchispresented

in Figure 2.2. These image "cubes" allow one to look at a single pixel, representing

a particular area of interest, through an entire growing season, and this concept

forms the basis for all further analysis in this research. These time series are used

to define the growth of rice plants, the purpose of which is to couple the image

data with methane flux estimation models so that there is less reliance on ground

truth data. These time series image cubes are also used in an effort to detect rice

growing areas. These topics will each be addressed in the following chapters.
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Chapter 3

Estimation of Rice Biomass Using AVHRR

3.1 Introduction

As mentioned in the Chapter 1, one of the byproducts of rice cultivation

is methane, a gas whose increased levels in the atmosphere has garnered greater

attention recently. The overall goal of this research project is to explore the

relationship between AVHRR imagery and rice production, and to ascertain the

extent to which the data derived from AVHRR can be successfully coupled with

methane flux models. In order to obtain direct input to the models from the

satellite imagery, a relationship must be found between the NDVI time series,

and total aboveground biomass. This chapter describes the data that was used to

derive this relationship, the methodology used, and the results.

3.2 Rice Plant Ground Truth Sources

An excellent source of plant data for this study was provided by Drs. Gowei

Yu and Ted Wilson of Texas A&M University (TAMU). The data was collected

for the 1992 - 5 growing seasons at the TAMU Rice Research Station, located near

Beaumont Texas, and for the 1998 - 9 growing seasons at a farmer's research field

near E1 Campo Texas. A reference map is provided in Figure 3.1.

The plant data collected over the six years includes almost a dozen different
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ricevarietiesthat arecommonlygrownin Texas,and which representa wide range

of growth characteristics. Included in the data that were collectedwereLAI and

total abovegroundbiomassmeasurements(for the remainder of this report, the

phrase"total abovegroundbiomass"will be referredto simply as biomass). The

samplingmethodologyutilized by Wu andWilson wasa completerandomizedplot

design,with eachvariety having between9 - 12plots (dependingon the year) for

destructive sampling, and 9 - 12 plots for yield estimation. Sampling frequency

was roughly twice a week at the beginning of the growing season,and roughly

once a week thereafter. A subplot was randomly selectedfor eachdestructive

sampling,making surethat eachof the sampleareaswasseparatedby at least0.5

meter of undisturbed plants [49].

Becausethe LAI and biomassdata were collected with non-regular time

intervals, the data weresampledfor usein this project to match the 10-dayperiods

of the NDVI time series.If there weremultiple samplesin a given 10-dayperiod,

then the valueswere averaged.There were someisolatedcaseswhere there were

10-dayperiodsfor a givenvariety that had no data recorded. In thoseeases,data

points wereinterpolated basedon the percentchangemeasuredfor other varieties

during the same10-dayperiod.

3.3 Derived Biomass Estimates

Beginning with the 6 sets of annual NDVI values, and LAI and biomass

measurements,a meansof relating any or all of the data was sought. Linear

regressionswerecalculatedbetweenNDVI and LAI, and NDVI and biomass,with

somesatisfactory results. But it wasimportant to derivea relationship that while

strictly empirical, made somephysical senseas well. As described in Chapter

2, NDVI is a good indicator of the amount of vegetation and the vigor of the
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vegetation. More vegetation, and more vigorous/healthy vegetation is directly

related to the photosynthetic potential of the plant. It is the photosynthetic

process that is responsible for the production of plant mass. Because biomass

during a growing season is essentially an accumulation process, it was reasoned

that comparing the accumulating NDVI over the growing season should provide

a reasonable proxy for the time series of biomass. Further support for selecting

to estimate biomass rather than LAI is provided by Casanova et al. who state

that "biomass during the rice-growing cycle is more precisely estimated [using

reflectance data] than LAI" [8]. The plot shown in Figure 3.2 is the cumulative

NDVI time series plotted against the biomass data obtained from the two ground

truth sites for each of the six years. Because during the first twenty days of the

growing season the plants are too small to be driving the NDVI of the pixels, it

was decided to not include the first two 10-day periods in any further analysis.

To get a better sense of the validity of the reasoning given above for relating

cumulative NDVI with biomass, NDVI was plotted against the changes in biomass

from each 10-day period to the next - in essence, un-accumulating the biomass.

For simplicity in the plot shown in Figure 3.3, the averages over the six years are

shown. Except for the 5th and 10th 10-day periods, the trends of the two time

series track each other, providing some added credibility to the supposition that

cumulative NDVI and biomass are related physically.
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Figure 3.1: Rice Growing Region of Texas with Notations of Ground Truth Sites
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As a means of assessing the general magnitude of errors in the estimation of

biomass that may be expected with this method, the following analysis was done.

First, regression relationships were calculated for the six possible combinations

of five years. Then, the biomass for the year that was left out of the formation

of the regression relationship was estimated from the cumulative NDVI for that

year. Finally, the estimated biomass was compared to the measured biomass. For

example, all of the cumulative NDVI and biomass data were pooled for 1993-1995

and 1998-1999, omitting the data pairs for 1992, and a regression relationship was

calculated. Then, the 1992 biomass was estimated by evaluating the cumulative

NDVI values for 1992 through the regression relationship. This was done for each

of the six years under study. The results of the estimation error are shown in Fig-

ure 3.4, where %error was calculated as: ((Estimated-Measured)/Measured)*100.

The errors in estimating 1992-1995 biomass are quite reasonable, and for

most of the years, the average error is driven by the first couple of biomass es-
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timates in the 10-day period. The errors for 1998 and 1999 are, however, more

problematic. As can be noted from the plot presented in Figure 3.2, the 1998

and 1999 data tends to have higher cumulative NDVI values coupled with lower

biomass values than do the 1992-1995 data. In an effort to try to understand

the source of the difference, it was first verified that the rice varieties that were

planted in 1998 and 1999 were also used in some of the data collected for the

earlier years. Additionally, no systematic differences were found in weather, such

as temperature and rainfall, between the two groupings. The last known variable

different between E1 Campo (1998-1999) and Beaumont (1992-1995) is soil. As

one can note from the information provided in Table 3.1 the soil components for

the two areas are quite different.

Table 3.1: Composition of Soils at E1 Campo and Beaumont Ground Truth Sites

Constituent E1 Campo Beaumont

24 %

Sand 63 % 25 %

Clay 13 % 32 %

Silt 43 %

Despite the noted differences in the E1 Campo and Beaumont NDVI-biomass

relationships, it was decided to continue with the regression relationship formed

with all six years-worth of data since the goal of this research is to derive a method

which may be useful for entire regions. This final regression equation, shown in

Figure 3.5, provides the means of estimating biomass values for the rest of the

study.



28

2500

2000

1500
<

1000

5OO

I I I 1 I

y = 427.637x - 371.547 r = 0.920 _ _/

/o

.__ I I I I

0 I 2 3 4 5 6

Cumulative NDVI

Figure 3.5: Regression Relationship Derived for Cumulative NDVI and Biomass

for 1992-5 & 1998-9

However, in order to further look at the effect of including seemingly dis-

parate regions in a relationship between cumulative NDVI and biomass, the results

from a calculation of a different regression relationship for E1 Campo and Beau-

mont are now presented. Similar to the analysis related to Figure 3.4 presented

above, the first step was to calculate regression relationships for each permutation

of 3 of the 4 years of data collected at Beaumont. In each case, the year that was

left out of the relationship was used to test that relationship by comparing the

estimated biomass with the measured biomass. The results for each are presented

in Figure 3.6.
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As can be noted in Figure 3.6, the average error for the predictions, using

regressions formed with only the Beaumont data, decreased for 1992, 1993, and

1995, while it increased significantly for 1994. In light of this result, it seems that

utilizing a separate regression relationship for the two different locations may be

advantageous. However, the dramatic increase in error for 1994, and the fact that

this method of guaging error levels could not be performed for the E1 Campo site

(due to the fact that there were only two years of data collected), it was decided to

proceed with the rest of the analysis using the 6-year regression shown in Figure

3.5. For reference, the two regression relationships are provided below in Figure

3.7.
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Chapter 4

Coupling AVHRR-Derived Biomass with a Semi-Empirical Methane

Emission Model

4.1 Introduction

The semi-empirical model discussed in this chapter was developed by Yao

Huang as a part of doctoral research at Rice University in Houston Texas, under

the supervision of Drs. Ron Sass and Frank Fisher. The data used in deriving the

relationships incorporated into the model were collected during field experiments

at the Texas A&M Beaumont Research Station and in pot experiments run on

the Rice University Campus. The model was validated using some Beaumont

field data which were held back from the development data, as well as on data for

several Asian sites. The following is a description of the Huang model, including

the processes it takes into account and how they are modeled, the manner in which

the remote sensing data was coupled with it, and the results that were obtained.

4.2 Methane Flux Ground Truth

The two methane flux estimation models, as will be described in this chapter

and the next, require biomass inputs which until now, could only be derived from

direct measurements. These requirements make application of these models to lo-

cations other than research areas where such data is collected almost intractable.



32

A method for utilizing AVHRR NDVI time seriesto estimate biomasswas pre-

sentedabove. However,in order to assessthe successof the method, comparisons

must be made between the flux estimatesmade by the models (both with and

without the remote sensingdata inputs) and real flux data. In order to do this,

methane flux measurementscollectedduring a time for which AVHRR imagery

are availablemust be utilized.

Methaneflux ground truth data wasobtained from Drs. Yu Huang and Ron

Sassof Rice University who collectedthe data at the TexasA&M Rice Research

Station near Beaumont in 1994. The methaneflux measurementswere collected

from paddiesdifferent from theoneswherethe biomassobservationswerecollected

by Drs. Wu and Wilson. The measurementswerecollected from four randomly

selectedmeasurementsites using a chambermethod. The headspacegasof the

open-bottom chamberwascollectedapproximately twice a weekand five samples

werecollected for eachchamberover a 30 minute period. The gassampleswere

then analyzedin a gaschromatographequippedwith a flame ionization detector

in order to obtain the methanemixing ratios [15].

4.3 Huang Model Description

In recognizingthe role that the riceplant plays in the production, oxidation,

and transport of methane,the Huangmodelwasformulated with an emphasison

the growth and developmentof the plant. For the methaneproduction cycle, the

model considerstwo sourcesof substratesfor the methanogenicbacteria, the rice

plant itself and addedorganic amendments. Additionally, someenvironmental

factors, such as the percentageof sand in the soils, that affect the production

wereincluded. Using data collectedin past studies,Huang formed a relationship

estimating the amount of carbohydratesderived from the rice plant with above-



33

ground biomass. Another empirical relationship was formed for the amount of

carbon substratesmadeavailableby organicmatter amendments.The final com-

ponent in Huang's estimate for the amount of methane that is produced is soil

redox potential.

Methaneoxidation and transport arenot specificallyaddressedin the Huang

model in the form of equations. However,useof data from past studies provided

fractional coefficientsfor the methaneproduction relationshipswhich accountfor

the amount of producedmethanewhich is immediately oxidized after production,

and then the amount of the remainingmethanewhich is finally transported.

Again, the emphasisof the Huang model is the plant growth cycle. In

the absenceof daily biomassmeasurementsto provide to the flux model, Huang

simulatesbiomassaccumulationusinga logistic growth equation of the form

W = IYma_ (4.1)
1 + Boexp(-rt)

where

and

Bo = Wmax- (4.2)
Wo

W,,_,_ = 9.46GY °'75 (4.3)

Plant aboveground biomass on a given day is W(gm-2). Wo and 14_,_ are

aboveground biomass at the beginning of permanent flooding and at the end of

a growing season, respectively. The variable t is the time scale measured in days

after permanent flood. The constant r is an intrinsic growth rate for biomass and

was empirically derived.

In summary, the ttuang model bases its estimates of daily methane flux from

rice paddies based on production levels which are empirically derived relationships.
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These relationships requirean estimateof the daily biomasswhich aresimulated

using the logistic growth equation shownabove. Required inputs arecrop yield,

to calculate the I4_ax value, and W0. However, it was not clear from where the

I¥0 value was expected to come in future applications.

4.4 Implementation and Results

The first task in implementing the Huang model was to generate the daily

biomass values to use in the model. Information was available to generate the

biomass time series using Huang's logistic growth curve equations, with a value

for W0 being suggested by Dr. Hnang.

Next, a means of generating daily biomass estimates from the AVHRR

NDVI-derived 10-day biomass estimates needed to be found. Two methods were

employed. The first was to fit a second-order polynomial through the AVHRR-

derived biomass estimates, and then to use the polynomial equation to generate

the daily values. The second method was to utilize the logistic equation suggested

by Huang but to utilize AVHRR derived _,_a_ and W0 values.

The three resulting daily biomass curves are shown in Figure 4.1. Also

included for reference on the plot are the biomass ground truth data points col-

lected by Huang, as well as the individual biomass estimates derived from the

AVHRR-NDVI time series.
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There are several things to note on this plot. First, observing the filled

and open circles, one can note that the AVHRR NDVI-derived biomass seems to

provide a good estimate of actual biomass, adding credibility to the cumulative

NDVI-to-biomass relationship derived for this part of Texas. Another overall

observation that can be made is that all three of the daily biomass curves provide

similar results. Looking next at the daily biomass time series derived from the

logistic relationship using the Huang inputs, one can note that it does an excellent

job of detecting the first thirty days of actual biomass values, but that it begins to

overestimate the biomass after that. The logistic growth curve generated by using

the biomass estimated by AVHRR NDVI clearly underestimates the measured

biomass for the first two-thirds of the growing season, after which it begins to

overestimate. So, on average, the NDVI-derived daily biomass curve seems to fit

the measured data better. However, because methane flux from rice plants is not
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uniform over the growing season, having a better on average fit is not necessarily

better.

Once the daily biomass curves were generated, each was run through the

flux estimation model. In addition to the biomass values, several other inputs

were required. The first is an average soil temperature for the growing season.

This was derived from the average air temperature using the relationship T_oil ----

4.4 + 0.76T_ir provided by Huang. Daily air temperatures were acquired from

NCDC and then averaged, as required by the model. Another required input is

a soil index, SI, which is based on the percentage of sand in the soil using the

relationship SI = 0.325 + O.0225(%sand). This index is an empirically derived

relationship which is intended to characterize the relative effect of soil texture on

methane production and emission. Finally, a vegetation index, VI, is required.

This scaling factor too is based on an empirical relationship [16] and is intended to

account for relative differences in methane production among rice varieties. Texas

rice varieties are generally assigned a VI of 1 or 1.5 [15]. Recognizing that several

varieties of rice are likely found in the area represented by a given AVHRR pixel, a

value of 1.25 was used for this study. The results of using the three daily biomass

series are shown in Figure 4.2. Also included on the plot are the measured flux

values.



37

1000

800

c.q
',C

600

400

"_ 200

0

I I

Estimated _sing
...... Estimated using

Estimated Using
- _ - Measured

I I I I I

Huan_ Biomass
NDVI'-Derived Logistic Growth Biomass
NDVI-Derived Polynomial Growth Biomass

_j_- . i I ." . -.

"/:_.-_,_ I I I I I I

10 20 30 40 50 60 70 8O

Days After Flooding

Figure 4.2: Comparison of Measured Methane Fluxes and Predictions from Huang

Model

Looking first at the daily methane flux curve that resulted from the AVHRR-

derived logistic growth biomass data, one can note that it significantly underes-

timates the flux. This is not surprising, because the method of generating the

growth curve resulted in biomass values that underpredicted the measured values.

Because methane production is dependent upon the availability of substrates, and

because those substrates result from plant growth, predictions of biomass which

are lower than reality, will subsequently result in methane flux underestimation.

Another thing to note with the AVHRR-derived logistic growth biomass input is

that the flux estimates do not decrease at the same rate at the end of the growing

season as tile measured values. This can be traced back to the overestimation of

the biomass with a logic similar to the cause of the underestimation of the fluxes

earlier in the season.

Looking next at the daily methane flux curve which resulted from the Huang-
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derived biomass, we note a good fit with the measured flux values throughout the

season. The only criticism with this estimation is that it misses the methane flux

peak at about day sixty and thus begins its decrease too soon.

The daily methane flux curve resulting from the AVHRR-derived polynomial

growth biomass provides an excellent fit to the early season flux measurements,

however, the estimates during the last twenty days of the season are extremely

high. This is due to the fact that the daily biomass estimates are significantly

higher at the end of the season than the measured values. The polynomial which

resulted from the curve-fitting of the 10-day estimated biomass was essentially

linear, with the coefficient of the second order term having very low value. This

suggests that indeed, a logistic equation is more appropriate than a quasi-linear

relationship of biomass over time. From a purely physical standpoint, this is very

logical since plants do not continue to grow infinitely.

Another way to analyze the appropriateness of coupling the Huang model

with remote sensing data is to look at total seasonal methane flux rather than daily

flux. For atmospheric scientists, daily methane flux estimates are not as useful a_s

total seasonal estimates. To do this, the daily methane flux estimates from the

Huang model were simply accumulated to get a seasonal value. For the measured

methane fluxes, in order to obtain a figure for the total seasonal flux, the daily

values were averaged, and then this average was multiplied by the length of the

growing season. This value could then be compared with the summed daily flux

values for the three biomass time series methods. Also evaluated for comparison,

was the result of a simplified set of equations provided in the Huang model, which

utilize only single values to represent the growing season, rather than performing

the calculations on a daily basis. In this calculation, the average biomass value is

defined to be 55% of l_ax.
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As canbe noted from the datapresentedin Table 4.1,both tile Huangdaily

biomasscurve and the AVHRR-derived logistic biomasscurve provide excellent

estimatesof both total seasonaland averagedaily methaneflux.

Table 4.1: Summary Comparison of Estimated and MeasuredCH4 Fluxes for
HuangModel

Biomass Model
Curve Version

FullHuang
(Logistic)
AVHRR
(Logistic)
AVHRR
(Polynomial)

Simple
Full

Simple

Full

Simple

Measured

Total Seasonal Average Daily

CH4 (mg/m 2) CH4 (rng/m 2)

27,281 354.3

26,536 344.6

27,123 352.3

28,896

33,510

36,067

2r,720

Percent

Error

-2%
-4%

-2%
375.3 4%

435.2 21%

468.4 30%

360.0

Additionally, flux estimates from the simplified version of the Huang model

are only slightly worse than those obtained from the full model. Clearly, despite

the fact that the plot in Figure 4.2 showed that the polynomial-fit biomass series

obtained from the AVHRR-derived biomass estimates had such an excellent fit

to the measured fluxes, the overestimation at the end of the season resulted in

estimation errors of, at best, 21%.

The sensitivity of the Huang model to differences in biomass were demon-

strated through interpretation of Figure 4.2. In an effort to understand better the

impact of uncertainty in one of the other primary inputs to the model, soil sand,

the percentage of sand in the soil was varied around the measured value for the

Beaumont site. The effect of these changes on daily methane flux can be seen in

Figure 4.3.
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The effect on total seasonal methane is as follows: 27.3 (g/m 2) with the

measured sand of 28%, 22.8 (g/m 2) for soil sand content of 21%, and 31.9 (9/m 2)

for 35% soil sand. This equates to a difference of 16% change in total seasonal

methane flux estimates for a 25% error in soil sand content. Clearly, accuracy in

soil sand content is very important in using the Haung model to estimate methane

flux.

Soil sand content is not something which is able to be estimated using

remote sensing. However, for this model, using biomass estimated from AVHRR

imagery can replace often inaccurate yield inputs to drive the biomass input. As

an illustration of how inaccuracies in yield can affect methane flux estimates, yield

values for the state of Texas and for Jefferson county, in which the Beaumont site

resides, were substituted for the yield data collected at the test site. The results

of this are shown in Figure 4.4.
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These daily flux differences translate into total seasonal flux of 33.0 (g/m 2)

of methane using the state yield value, compared with 27.3 (g/m 2) of methane

using the actual yield value for the test site. Using the county yield value netted a

total seasonal methane flux of 25.8 (g/m_). It is quite evident that using AVHRR

derived biomass yields better results than do inaccurate yield data.

A summary of the results from the coupling of AVHRR-derived data with

the Huang model will be presented in Chapter 7, as will suggestions for further

research.



Chapter 5

Coupling AVHRR-Derived Biomass with a Process-Based Methane

Emission Model

This chapter describes the use of AVHRR-derived biomass in a process-

based model developed by Peter van Bodegom as a part of doctoral research at

Wageningen University in Wageningen, the Netherlands under the supervision of

Drs. J. Goudriaan, P. Leffelaar, and A. J. M. Stams. The numerous subcompo-

nents of the model were developed using laboratory data and then validated on

several data sets, primarily from Southeast Asia. As will be described more fully,

the model was altered specifically for this study to take aboveground biomass as

an input. The following sections will describe the model, how it was implemented

in this study, and the results of its application to Texas rice crops.

5.1 van Bodegom Model Description

The van Bodegom model takes into account more subprocesses which play

a role in methane emission from rice paddies and treats these processes in a

more rigorous manner than does the Huang model. This is especially true in the

production and oxidation cycles. Additionally, the model looks at both of these

processes separately for the bulk soil, and the rhizosphere. The rhizosphere is

the volume of soil immediately surrounding the root system, and the rationale

for treating it separately from the bulk soil is that it is really the effects of the
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roots that drive the production and providemost of the meansfor the oxidation

of methane.

In the equationsdefining methaneproduction, van Bodegomtakesinto ac-

count substrateproduction from mineralization of carbonavailablein the soil, de-

composition of organic amendmentsand plant roots, and root exudation. There

are terms in theseequationswhich accountfor the competition that methanogenic

bacteria has from nitrite, iron, and sulfate reducing bacteria. Thus, knowledgeof

the soil beyond the percentageof sand needsto be known. Knowledgeof ferric

iron, nitrate, sulphate, and carbon contentsis required.

In the treatment of methaneconsumptionvia oxidation under normal flooded

conditions the equationsaredefinedto be relatedto the growth of the rhizosphere

since most of the oxidation occurs there. Additionally, information on flooding

conditions over the growing seasonare an optional input such that any reintro-

duction of oxygento the soil can be taken into account.

Methanetransport is treatedby vanBodegomin amannersimilar to Huang,

in that eachof the potential transport mechanismsis lumped together into atrans-

port coefficient.However,vanBodegomdoeshavedifferent transport coefficients

for the rhizosphereand the bulk soil. The onemajor addition that van Bodegom

makes is to take into account the rush of methane that is prompted from the

drying of the soil oncethe paddy is drained, usually 5-10 daysprior to harvest.

This increasedtransport would also be reflected if the paddy dries out and this

is included in the aforementionedoptional input of flooding conditions over the

courseof the growing season.
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5.2 Implementation

Originally, the van Bodegom model was developed to account for plant

growth by focusing on the development of the root system, which is responsible for

almost every aspect of the methane emitted by rice paddies. This root growth was

defined by a logistic growth curve which describes the daily root length density

(RLD) during the growing season. Similar to the Huang model, the van Bodegom

model obtains a value for RLDm,_:_ through the use of crop yield. Additionally, a

harvest index, HI, is utilized, which is defined as a ratio of grain yield to total

above ground dry mass.

For application to this research, Dr. van Bodegom altered the original model

to accept a table of total aboveground biomass values available throughout a

growing season. This adaptation now allows the growth of the roots to be dictated

by the accumulation of biomass. The biomass values used to drive the model in

this study, were the estimates derived from the AVHRR NDVI time series. In

the model, the biomass values are then used to drive the root growth calculations

mentioned above, with one other piece of data being required. This input is called

specific root length (SRL) and it is the ratio of the root length to the dry weight

of the root. This is not a well known value for very many varieties of rice, and no

reference to the SRL of any of the common Texas varieties could be found. Thus,

the default vah,e given in the model was Utilized in this study.

Of the other required inputs, some were readily available. The sulfate and

nitrate concentrations were set to zero since these compounds are found naturally

only in trace levels, and would have non-zero values only when the soil is treated

with fertilizers. In the case of Texas, it is known from field treatment logs that the

fields were treated only with urea, which do not contribute to the levels of these

two compounds. The level of mineralizable carbon in the soil was rather difficult



45

to obtain, but a sourceof the information wasfinally found and the input wasset

to 1.0%. The iron concentrationof 0.2%,soil porosity Of50%,and water content

of 25%at field capacity,wereall obtained from the samesource[7].

5.3 Results

The model was run using these inputs, producing daily flux estimates for

the 1994Texassite• Both the estimated biomassfrom the AVHRR NDVI time

series and the measuredbiomass were run through the model in an effort to

ascertain the sensitivity to differencesin biomass. This was an unknown prior

to this research,since the model was adapted specifically for this study. The

differencesbetween the measuredand estimated biomassvalues produced very

little differencein daily methaneflux. The plot shownin Figure 5.1 presentsthe

model run with the NDVI-derived biomass,alongwith the measuredflux values.
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From the plot, it is clear that as currently configured, the van Bodegom

modelquite accuratelyfollowsthe trendsin the daily methaneflux from this Texas

field. The only significant deviation from the measuredflux is an overprediction

for the first 35 daysafter flooding. This overprediction,however,greatly impacts

the averagedaily and total seasonalflux estimates, which were 448.0(mg/m2)

and 34,492(mg/m2) respectively. Thesevaluesare almost 25% higher than the

measuredvaluesof 360.O(mg/m2) and 27,720(mg/m2). Soalthough the shapeof

the daily methaneflux estimatesmatchesquite closelywith the measuredflux, it

seemsthat the overestimationat the beginning of the seasonvery much affects

the seasonaldaily averageand total flux. The SRL variable which is unknown for

the Texasrice varietiesmay be affecting this, or more likely, the estimate of soil

iron content may not be well enoughknown.

As a meansto understandingbetter the effectuncertainty in the input vari-

ablesmay haveon methaneflux predictions, three variableswerealtered and the

resulting predictionswereplotted. The three variablesselectedwerebiomass,soil

mineralizablecarbon content, and soil ferric iron content. SRL was not selected

for analysissinceit is unknownat this time what the magnitudeof variation might

be. The plot shownin Figure 5.2 representsvariation of 10% lower and higher

than the AVHRR inputs of biomassinto the model. Changesin daily methaneflux

estimatesdue to differencesin biomassaremanifestedin this model primarily at

the peak of the reproductive phaseof the rice crop, aroundday 55after flooding.

This clearly illustrates the fact that the van Bodegommodel focusesmore on the

microbial processesat work in methaneemissiondue to rice crops, and that the

growth of the rice plant playsa secondaryrole. However,the role seemsadequate

in the sensethat the contribution of the riceplant to carbon sources,which comes

into play in the later parts of the growingseason,result in goodestimatesof daily
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methaneflux.

Referring to Figure 5.3, onecannote that the changesin daily methaneflux

for various levelsof soil mineralizablecarboncontent are pronouncedthroughout

almost the entiregrowingseason,with theexceptionof the start of the season.The

reasonthat rate of methaneflux is not affectedat the beginning of the seasonis

that the methanogenicbacteria areoutcompetedfor the substrateproduction re-

suiting from the mineralization of tile carbonby the alternative electronacceptors.

Oncethose acceptorsare depleted,the methanogenscan utilize the substrates.
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Tile effects of Varying soil iron content can be ascertained by looking at the

plot shown in Figure 5.4. Here is presented not only a +- 10% difference in Fe(III)

levels, but also tile Fe for a soil very different from the soil found in this region

of Texas. The effect on methane flux, as expected, is more pronounced at the

start of the growing season. This again relates to the competition between the
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methanogens and the alternative electron receptors associated with iron.

A summary of the results from the coupling of AVHRR-derived data With

the van Bodegom model will be presented in Chapter 7, as will suggestions for

further research.
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Chapter 6

Mapping Rice with AVHRR

6.1 Background

In an effort to take advantage of the advances presented in previous chapters,

specifically, using satellite derived biomass to drive methane emission estimation

models, one can envision some type of GIS database with georeferenced infor-

mation on soil types and rice crop locations, which would allow for automatic

inputs. Information is already available to populate a GIS soils layer in such a

database. However, exact locations of rice crops from year to year are pieces of

information that are not available from any sources at this time. For example, in

the United States, crop information is generally disseminated in terms of acreage,

such as number of acres planted/harvest for a given crop. The exact locations

of the fields which are planted are of little consequence to the tabulation of such

crop statistics by state or federal agencies. Some organizations that do care about

exact locations are forced to make such mappings on their own. For example in

Texas, personnel in the offices of the Lower Colorado River Authority (LCRA)

who deal with supplying water to rice paddies must hand-draw reference maps

each year to record which fields are planted and which are left fallow because the

information is not available elsewhere.

With these thoughts in mind, a preliminary investigation was conducted to



52

assessa techniquewith potential for automatically detecting likely rice growing

areas directly from the samesatellite imagery used to obtain the NDVI time

series-basedestimatesof biomassfor the methaneflux prediction models. This

technique,calledmatchedfiltering, is describedin this chapter and the resultsof

its application in this researchproject arepresentedand discussed.

6.2 Methods and Materials

6.2.1 Matched Filtering

Matched filters were originally developed to detect known signals in the

presence of noise [9] and have traditionally been used in signal processing appli-

cations, such as voice detection/'recognition. A logical extension of this was an

attempt to detect a known signal within a group of unknown signals. It is in this

spirit that the filter has been applied to satellite imagery.

One application of a matched filter to imagery is to utilize known spatial
2

patterns tO detect specific targets, if present in the scene, against various back-

grounds. In this application, as well as in the signal processing application, the

matched filter works by taking advantage of properties of spatial information

transformed into the frequency domain. For example, if one applies a Fourier
" : : : :

transform to both a known signal and an unknown signal, the convolution of the

two will result in a delta function if the two signals are perfectly matched. Peaks of

decreasing amplitude and increasing width will result from increasingly dissimilar

signals. In this way, one can obtain an indication of how closely the two signals

match, or do not match, by the result of the convolution. Figure 6.1 illustrates,

conceptually, how the matched filter searches for a reference signal, shown in (a),

in a noisy signal, shown in (b), and the output of the matched filter operator, in

(c).
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(a) Reference

Figure 6.1:

Domain[9]

(b) Reference+Noise (c) Output

Schematic of Matched Filtering Inputs and Output in Frequency

In this study, instead of using a known spectral signature to detect likely rice

growing areas, a known temporal signature, in the form of an NDVI time series, is

used. Because cropping conditions change from year to year, the reference NDVI

time series will also change from year to year. Thus, it would not be possible

to build a reliable library which would be applicable to each growing season of

interest. Instead, a reference time series, or spectrum, would need to be defined

for each year under study.

Unlike the spatial matched filter, the spectral matched filter does not trans-

form the image data into the frequency domain. Instead, the filter performs and

considers the results of linear transformations which are commonly used in the

analysis of multispectral data sets. Rather than coding a matched filtering algo-

rithm, an existing implementation of this filter was used from the Envi software

package available from RSI Inc. The following summary of the mathematical basis

used in the Envi software now follows.

According to Harsanyi and Chang [12], it is possible to isolate a signature of

interest from undesired signatures through the development of a specially designed

linear operator. This operator could then be used on any given mixed pixel, r of

a multispectral image,

r(x,y) = Mo_(x,y) + n(x,y) (6.1)
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whereM(x,y) is a matrix with linearly independentcolumnsof p different spectral

signatures and rows representing each of the bands under consideration. The

c_(x,y) is a pxl vector with the weights of each spectral signature in the pixel,

and n is a vector representing random noise for each band. If the last column

of M is assumed to be a spectrum of interest, and called d, then (6.1) can be

rewritten as

r = dc_p +U_,+ n (6.2)

where a is the fraction of the spectrum of interest, U is a matrix with linearly

independent columns of p-1 spectral signatures, and 0' is a vector which contains

the first p-1 values of ¢_.

In order to develop the matched filter such that it eliminates the effects of

the unwanted spectra represented by U, the mixed pixel r must be projected onto

a subspace orthogonal to U. In this way, the resulting vector will contain only

energy associated with tile spectrum of interest, as well as random noise.

Harsanyi and Chang continue by defining this operator to eliminate the

P = (I- UU #) (6.3)

where U # = (vTv)-lV T is the pseudoinverse of U. As opposed to minimizing

the least squares error, this operator instead minimizes the energy associated with

the spectra which are not of interest. Using P to operate on (6.2) yields

Pr = Pdap +Pn (6.4)

The next step in the construction of the matched filter is to construct x T,

an operator which maximizes the signal-to-noise ratio (SNR).

xTpr = xTpdap + xTpn (6.5)

unwanted spectra to be
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In order to find a value which maximizes X T one must maximize the signal-to-

noise-energy ratio, A

xTpda2dTpTx a 2
-- P xTpddTpTx (6.6)

A = xTpE{nnT}pTx -- a---_ xTppTx

where E{.} denotes the expected value. Maximization of the quotient A can be

generalized to an eigenvector problem of the form

PddTpTx = AppTx (6.7)

where A = A(a_/o2). The result of the maximization is

X T __ t_d T (6.8)

where n is an arbitrary scalar.

Finally, according to Harsanyi and Chang, substitution of (6.8) into (6.5)

yields the overall matched filter operator

qT = dTp. (6.9)

When this matched filter operator is applied to each multiband pixel of an image

being searched, a single band image results with the value of each pixel being a

measure of the presence of the signature of interest. [12]

Included in Figure 6.2 is a schematic representing the matched filter results

for three different pixels. In (a) the NDVI time series of the unknown pixel from

an NDVI time series cube, exactly matches the reference in (b) which would result

in a relative match value of 1 being assigned to the pixel location of the unknown

time series in the matched filter output "image". In (c) is shown an NDVI time

series for another unknown pixel in the same image cube. Comparing it again to

the reference time series in (d), the matched filter would assign a very low relative

match value. In (e) is shown an NDVI time series of a third unknown pixel. When
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compared to the reference time series, again shown in (f), a fairly high relative

match value would be assigned to that pixel location in the matched filter output

image since it so similar to the reference.
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6.2.2 Ground Truth Data

As mentioned in the previous section,one must know for certain at least

oneareawhererice is beinggrown in order to obtain the referencespectrum. The

areasof known rice cropping from which the data usedin the previous chapter

wereobtained, wereagain usedhereas the referencespectra for eachyear under

consideration. Again, these locations were at the Texas A&M researchstation

near Beaumont,TX for 1992-1995,and at a farmer's field nearE1Campo, TX for

1998-9.

As discussed in the previous sections, the output of a matched filter is a

value for each pixel which provides a relative degree match between the spectrum

of the pixel under consideration and the reference spectrum. Because the values of

the pixels in the image resulting from the matched filter can range almost infinitely

from 0 to 1 (1 being a perfect match) the challenge is to select an appropriate

cutoff for this value, such that false positives are minimized. Because conditions

each year are different, as well as the fact that the matched filter result is only

relative, we would not expect that the cutoff value would be the same from year

to year. In order to guide this cutoff selection, agricultural statistics were utilized

to constrain the number of pixels flagged as adequately matching the reference

spectrum. These statistics were acquired from the Texas Agricultural Statistics

Service (TASS) for the six years under investigation in this study. Figures for the

number of acres of rice which were planted for each of the six years are included

in Table 6.1, as are the approximate number of AVHRR pixels which represent

the area planted with rice.

Once the matched filter was run for each year of interest, a histogram of the

resulting degree of match values was produced for each year. The cutoff value for

each was selected by noting what degree of match value resulted in the number
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Table 6.1" Acres of Rice Planted and Number of AVHRR Pixels Represented

Year

1992

1993

1994

1995

1998

1999

Number of Acres Number of l:lkm Pixels

Representing Acres of RicePlanted in Rice

353,000

298,000

354,000

Ii80

1000

1190

318,000 1065

268,000 900

245,000 820

of pixels expected for rice cropping acreage for that year. Although these cutoff

values by themselves are not important, the fact that they ranged from 0.556 -

0.818, reinforces the point that indeed each application of a matched filter yields

relative and not absolute results. As an example, the plot shown in Figure 6.3 is

the histogram for all of the relative match values for land areas in 1993. It is from

histograms like this that the relative match thresholds were selected.
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6.3 Results and Discussion

!!: :

The application of the Envi-based matched filter, using the crop statistics

thresholding criterion described above, yields mixed results. The accuracy of the

method can not be quantitatively measured because, at this time, not enough

ground truth is available to do so. However, qualitative assessments can be made

and will be described in this section. Suggestions for further assessments with the

availability of ground truth, as well as different approaches will be discussed in

Chapter 5.

We begin with making some observations about the maps presented in Fig-

ure 6.4 on page 61. Each of the maps in the subfigures represents the rice growing

region of Texas, and the pixels which met the relative match value threshholds

are shown in black. The first observation one can make is that the majority of

the pixeIs which are the likeliest match to the rice NDVI time series are clustered
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in tile coastal areas of tile region, which is indeed where the rice is grown. Few,

if any, pixels in the upper left region of the maps were selected as having a high

degree of match. Since this part of Texas is generally uncultivated grassland,

this observation indicates a good amount of promise for the matched filter in this

application.

Closer inspection, however, reveals that the locations of the concentration

of the matched pixels shift rather dramatically from year to year. If familiar with

the reference map shown in Fig. 3.1, one can note which counties have the highest

concentrations. The following table summarizes these observations for each year

and also provides those counties' rank out of the eighteen rice producing counties

in Texas (in terms of acreage planted). A rank of one would denote the highest

producing county.
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Year
Countieswith

High Concentration
of Matched PixeIs

1992 Harris
Wharton
Ft. Bend

1993 Jefferson
Chambers

1994 Matagorda
Jackson

Non-riceproducing
1995 Jefferson

Chambers
1998 Wharton

Colorado
Non-riceproducing

Rank of the County as
Rice Producer in

Texas(of 18) for that year

10

9

3

6

3

1999 Wharton 1

Colorado 2

Non-rice producing

From Table 6.2, one can see that three of the six years had significant num-

bers of pixels which the matched filter operator identified as having a high likeli-

hood of being rice, but were outside of the rice cropping areas of Texas. Addition-

ally, only a handful of the top rice producing counties consistently had significant

numbers of rice cropping pixels attributed to them. So although at first glance, it

would appear through visual inspection that the matched filtering operator does a

reasonable job in detecting likely rice cropping areas, only a rather cursory quali-

tative look strongly indicates that this technique, as it is currently implemented,

does not yield accurate enough results for the intended purpose.

In trying to assess whether or not the matched filter operator has unreal-

ized potential in utilizing temporal signatures, rather than the more well-proven
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spectraland spatial signatures,the weaknessesof its current implementationmust

be explored in order to seeif there are ways to potentially overcomethem. The

weaknessescan fall into oneof threecategories:the sourceimagery of the tempo-

ral signature, the selectioncriterion for the relative match value cutoff, and the

useof the temporal signature itself.

In assessingthesourceimageryof the temporalsignature,namelythe AVHRR

sensor,one must consider the attributes of the sensoritself, as well as the fea-

sible processingthat can be donefor largeground coverageapplications suchas

this. In terms of the sensor,the rather grossspatial resolution is clearly an issue.

Although the matchedfilter operator is designedto be applied to casesof mixed

pixels, the relative contribution of a spectrum of interest has a higher potential

to be occulted in a pixel coveringa larger ground area. Becauseof the greater

potential for mixed spectra, evenpixels having mid-range relative match values

due to the presenceof the spectrumof interestwould not be likely to havea high

enough match value to passthe cutoff threshold, and would thus be eliminated

from any final count. Obviouslya pixel which hasa smaller footprint would have

greater potential for allowing the spectrum of interest to differentiate itself from

other spectra.

The relatively recentlaunchof the AVHRR follow-on mission,the Moderate

ResolutionImaging Spectroradiometer(MODIS) will go a long way in improving

on the spatial resolutionof NDVI products (from 1.1km for AVHRR to 250m for

MODIS) while maintaining the superior temporal resolution. This improvement

will help to accomplishgoalssuchasthe developmentof imagesegmentationop-

eratorswhich canbe appliedto taskswhich require increasedlevelsdifferentiation

amongvegetationtypes.

The issueof which pre-processingtechniquesare usedin this study for the
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AVHRR imagery may also have an impact on the successfulapplication of the

matchedfilter operator. Becausethis operator maximizesdifferencesbetweenthe

referencespectrumand the other spectrain the image,pixels which actually have

a similar temporal spectrum to the reference,but which have even one ten-day

period in which the pixel wascloud-covered,will result in a low degreeof match

for that pixel. Therefore,a method of reconstructingmissing data values in an

NDVI time serieswhich are due to clouds would need to be found in order to

increasethe chancesthat the pixel would be correctly identified. Proposedin the

recentliterature is a new techniquefor doingsowhich usesthe Fourier transform

of the NDVI time seriesto detect the clouds,and then utilizes a statistical method

for reconstruction of any missingportions of the time series[30]. Successfulap-

plication of sucha method wouldallow the matchedfilter to detect more true rice

growing areassincethe thresholdwould no longereliminate thosepixels in favor

of somefalsepositives.

The issueof the selectioncriterion for the cutoff valuefor the relative match

valuecouldalsocontribute to the lessthan desirableresultswhichwereobtained in

this application of the matchedfilter operator. The idea of guiding classifications

with agricultural statistics hasbeenexplored with somesuccessin the past (see

[47]) so its use here is not being questioned. However, the way in which the

statistics were utilized in this application may be able to be improved. In this

study, sinceit is known that rice cropping is doneonly in the Gulf coast area of

Texas,imageryfrom the entire state wasnot included. However,significant areas

where it is known that rice is not grown were still included in the input to the

matched filter operator. It is conceivable that a GIS system could be utilized to

build a mask to eliminate those counties which are not involved in rice cropping,

such that the matched filter operator is applied only to those counties which are.
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Then, theagricultural statistics couldstill beutilized in the samemanner to select

the'relative match value threshold,presumablywith better results.

Finally, the issueof the efficacyof usinga temporal referencespectrum for

rice from one region and expecting it to adequatelycharacterizerice in another

regionshouldbe addressed.As discussedpreviously,there weretwo ground truth

sites in two differentparts of the ricegrowingregionof Texas. As shownin the Soils

Table presentedin Chapter 3, thesesitesare situated on two distinctly different

soil types. One canseein Figure 6.4on page61 that the 1992-1995matchedfilter

outputs did not effectively highlight the rice cropping areasaround E1Campo,

while the 1998-1999matched filter outputs did not effectively highlight the rice

cropping areasaround Beaumont. A question that should be asked is if it is

possiblethat thesesoil differences,and the differencesin cropping practiceswhich

may result from the differencein plant requirements,cancauseenoughdifferences

in the rice plants that the NDVI time seriesfor the two are too different to be

usedto detect the other. In an effort to better understand this, a closerlook was

given to the NDVI time series,shownherein Figure 6.5, for eachof thesegrowing

seasons.
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Figure 6.5: NDVI Time Series for 1992-1995 and 1998-1999

In trying to use the information in the plot to support the idea that the

NDVI time series are just too different for one region to use in another region,

one would expect noticeable differences between the 1992-t995 Beaumont spectra

and the 1998-1999 E1 Campo spectra. Instead of detecting noticeable differences

between the two groups, one can note the each of the NDVI time series pre-

sented has unique features. There seems to be no Beaumont grouping and no E1

Campo grouping. Upon further consideration, because the matched filter operator

responds to relative factors within an image cube, one can not expect that differ-

ences in results from case to case can be tied to differences among their respective

reference spectra.



Chapter 7

Summary and Conclusions

7.1 Coupling AVHRR Data with Methane Emission Models

In this research, the promise of coupling satellite remote sensing image data

with biogeochemical models of methane from rice was demonstrated. The crux

of the demonstration was relating a satellite image derived value, NDVI, with a

plant parameter, biomass, that could be used to drive the models. The empirical

relationship between cumulative NDVI and total aboveground biomass provides a

satisfying approximation for biomass that also has some rationale from a physical

standpoint.

The limitations of the relationship that was derived are, however, not neg-

ligible. First among them is the fact that the study area was limited to Texas,

and the rice varieties and growing season are not likely to be directly applicable

to areas outside of the Gulf of Mexico region of Texas, and perhaps Louisiana.

If future study in other geographic areas is undertaken, one priority should cer-

tainly be an attempt to identify sources of plant data in other regions, such as

California, and of course, in Southeast Asia. If such data were acquired, and it is

found that indeed, the cumulative NDVI-to-biomass relationship derived in this

study does not hold, then perhaps a limited database of relationships could be

developed such that future analysis could select the relationship appropriate to

i
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the region under study.

One difficulty with utilizing an accumulating variable, in this case, cumu-

lative NDVI, is that changes in lengths of growing seasons over the compositing

rate (in this case, 10 days) render the relationship unusable. This problem was

already encountered in the course of the research performed for this study, as will

be described here. An excellent source of methane flux data was acquired under

the direction of Dr. M.A.K. Khalil over seven years in the Sichuan Province of

China [19]. With the view to utilize this data set, AVHRR imagery was acquired

for three of the seven years that Khalil collected methane flux data. It was as-

sumed that the cumulative NDVI-to-biomass relationship derived and described

in Chapter 3 could be utilized to estimate the biomass of the Chinese rice using

the NDVI time series of the China imagery. However, it was discovered that the

length of the growing season for rice was over 20 days longer in this study area

of China than in the Texas study areas. Thus, the cumulative NDVI-to-biomass

relationship would use two extra NDVI MVC composites in accumulation, pro-

ducing biomass values that would likely be much higher than in reality. Assuming

that the biomass values for the Chinese varieties are similar to the Texas vari-

eties, the plants simply take longer to grow. Thus, a cumulative NDVI to biomass

relationship for the China area would have a considerably lower slope than the

relationship derived for Texas.

Another difficulty that would certainly be posed by forming a cumulative-

based relationship will occur in regions where more than one rice crop is grown

per year, such as in the southern provinces of China where up to three rice crops

are grown per year. Because of this, the accumulation of NDVI over the whole

year would cease to be linear.

Assuming that tile methodolog_ of obtaining biomass using cumulative
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NDVI from AVHRR can be successfully applied to areas other than Texas, the

use of the Huang model, and even the van Bodegom model with improved access

to accurate inputs, show great promise in being able to estimate methane emis-

sion, both on a daily flux basis and on a total seasonal flux basis. Eliminating

the dependency of obtaining a yield value for estimating biomass, used in both

the Huang model and the original van Bodegom model, is an important result

of this research. Crop yield values, although generally easy to obtain, can vary

tremendously. National- and state-level yield values are averaged to such a great

extent, that it would be unwise to rely on them at the county- and certainly not

at the pixel level. Obtaining county-level yields are much more difficult, and often

rely on voluntary information Provided by individual farmers. Estimating biomass

from satellite imagery instead of yield seems like a much better method, and one

which, as shown in this research, has the potential to result in as good an estimate

of methane emission from rice as areas where yield information is well known.

Although this study was not intended to directly compare the results of the

two models, it is appropriate to discuss the implication that the Huang model

estimated methane emission better than did the van Bodegom model. This con-

clusion is the result of comparing average daily methane fluxes and total seasonal

fluxes obtained from the two models with those fluxes which were measured. The

flux estimates obtained from the Huang model seemed to be more closely matched

to the measured values than did the van Bodegom estimates. However, caution

should be made when making these types of comparisons. Because the methane

flux measurements were made on only 17 of the 77 days that the paddy was

flooded, there may be an over- or underestimation of the daily average and total

seasonal fluxes resulting from small time-scale flux changes being missed through

undersampling. Additionally, the greater difference between the van Bodegom es-
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timates and the measuredvaluesmay be due to imprecisionsin the non-biomass

inputs, especiallythe mineralizablecarbonand iron contentsof the soil. An addi-

tional item to note is that the Huang model, sinceit is moreempirical has likely

been better tuned to this study area. As a result, the model may not perform

as well in other rice cropping areas.Finally, it should be pointed out that there

wasonly oneyear of methaneflux data available. Additional yearsof data, with

different cropping conditions,wouldbetter provideunderstandingof the strengths

and limitations of eachof the modelsin relation to using AVHRR derivedbiomass

inputs.

This brings up the final summary point, which is that although one of the

major ground truth inputs, namely crop yield data, has beenable to be replaced

with a satellite derived input, each model still requires other inputs. Someof

the inputs, suchas averageair temperatures,are fairly easy to obtain. Others,

suchas soil components,are not. Still others, suchas variety index and specific

root length, may only beestimated becausethe information doesnot exist at all.

Work must continue to createbetter and more reliabledatabasesof the necessary

information which alreadyexists in other places,and to work with scientistswho

are in a better position to populate the databasesfor information which doesnot

yet exist.

7.2 Mapping Rice with AVHRR

Because of the promise demonstrated in this research to drive methane flux

estimation models with biomass of rice plants derived from satellite data, a means

to identify the locations of rice paddies from year-to-year would be invaluable. The

matched filter method explored in this research is not up to that task in its present

form and implementation. But the idea should not be given up entirely. Several
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suggestionsfor modifications to the manner in which the filter is implemented

were discussedextensively in the previouschapter. These include constraining

the imageareasearchedusing cropstatistics.

Another feature that shouldbeadded to the information that the mapping

routine provides is growth season-relatedestimates,suchas when the rice crop

started, when it washarvested,etc. These types of dates are required for the

implementation of the satellite derivedbiomassin the methaneemissionestima-

tion models. Although the rice planted in eachregion likely maintains the same

planting-to-harvest duration, the time at which planting occursvariesfrom year

to year, basedon weatherconditions. In order to accumulatethe proper NDVI

time series,the start of the cropping seasonneedsto be known. This type of

information should be determinedat the sametime that the rice cropping areas

are being detected.

Overall, the potential for increasedunderstandingof the contribution of rice

paddiesto the atmosphericmethanebudget through the useof AVHRR satellite

data has beendemonstrated. Future researchand study will help to realize the

potential, and would be time and money well spent.
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